
Minesweeper

The rules of the game are as follows:

There exists a board, which contains a grid of spaces. A space could be a

mine, or not. The player clicks on a space, and it gets revealed. The goal of

the game is to reveal all the spaces that are not mines, while avoiding the

spaces that are.

When a space is revealed:

If it’s a mine, the game ends

If it’s not a mine, it shows the number of mines adjacent to that space

(anywhere from 0 to 8, with 0 just showing as an empty space)

- If a space has no adjacent mines, all non-mine spaces adjacent to it are

also revealed The player uses the numbers as clues to figure out where

other mines may be located.

When all of the non-mine spaces have been revealed, the player wins!

Flags: Right-clicking a hidden space puts a flag on that space, marking it as

a possible mine. Flagged spaces cannot be revealed (with left-clicks or as

a result of adjacent spaces being revealed), but another right-click will

remove the flag.



Mine Counter: to track the number of mines that are on the board. Every

time the player places a flag, the counter goes down by one. Every time

they remove a flag, the counter goes up by one. The mine counter CAN go

negative!

Restart Button: The smiley face centered at the top or bottom of the

window lets you restart a new board with everything reset and mines

randomized

Non-standard features for your version of this project

Debug Button: Clicking this button will toggle the visibility of the mines on

the board. Use this to help you test/debug various features of the game.

Having to play the game properly each time you want to test something is

very time-consuming. Creating these developer shortcuts helps speed up

the development process

Test Buttons #1-3: Another development shortcut, clicking on these loads a

file with a specific board layout, details on this later.

Those are the features that your game will need to have. The rules are

pretty simple, but even simple games like this can be challenging to

implement.



Adjacent Mines and Tiles

In order to calculate the number of nearby mines, as well as when

revealing tiles, each tile should store a list of neighboring tiles. A tile could

have UP TO 8 neighbors. An easy way to do this is with pointers. Since the



number is a variable, a dynamically sized container would be perfect for

this. You could also use a fixed-length array, since no tile will ever have

more than 8 neighbors.

vector<Tile*> adjacentTiles; // Store each tile near us, the size() of each

vector will vary

Tile* neighbors[8]; // Always 8 pointers, some of which might be nullptr




